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Abstract. Information on both radial and angular atomic coordinations is provided by the
quadrupole interaction between the quadrupole moment of the atomic nuclei and the electric field
gradients (EFGs) originating from the distribution of electric charges around the nuclei. 69Ga and
71Ga are quadrupolar nuclei active in NMR. Their spectra are recorded in amorphous GaF3 which
may be considered as a model compound for disordered fluorides with fluorine corner sharing
octahedra. An unique and continuous quadrupolar parameter Czjzek distribution allows us to
simulate the experimental spectra. The measured chemical shifts indicate that the Ga3+ ions are at
the centre of (GaF6)

3− octahedra in the amorphous GaF3 phase.
A polarizable point charge model is used to explain NMR quadrupolar parameters which

are related to the electric field gradients at the Ga site. Lattice summations are performed in
the direct space over spherical volumes. Atomic position sets generated by molecular dynamics
are shown to give quadrupolar parameter distributions which look like Czjzek ones whatever
the EFG calculation approximations. Provided the polarizabilities are adjusted, they allow us
to reconstruct the experimental NMR spectra which correspond in any case to slightly distorted
(GaF6)

3− octahedra. The present approach may be applied to any ionic disordered compound
which contains quadrupolar nuclei and used to quantify short range order around such nuclei.

1. Introduction

Most experimental data on the degree of short range ordering in disordered solids are usually
obtained using diffraction techniques and EXAFS. The experimental results are determined by
the number and radial distances of atoms in the first coordination shells but carry no information
on their angular distribution. One possibility of yielding information on the angular atomic
coordinations is provided by the quadrupole interaction between the quadrupole moment of
the atomic nuclei and the electric field gradients (EFGs) originating from the distribution of
electric charges around the nuclei.

Nuclei with spin greater than 1
2 constitute a large group of NMR active nuclei in the periodic

table. They are subjected to this quadrupole interaction and so they can be used as effective
microscopic probes. Their potential as probe of structure in solids has been greatly enhanced
with the recent development of high resolution techniques. However, relatively little is known
about the relationships between the measured quadrupolar parameters νQ and ηQ, and the
charge distributions. Publications trying to relate NMR quadrupolar parameters to structural
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features are rare [1, 2] despite this approach could be particularly useful in quantifying radial
and angular atomic distributions in disordered phases such as amorphous and glassy materials.

It is important to emphasize that such an approach provides relevant local information but
does not allow to strictly establish the structural long range order of disordered systems. To our
knowledge, two alternatives may be worked out. A first one is based on first modelling some
structural networks and then comparing so inferred quadrupolar parameters to experimental
ones. Such an approach was used in the case of FeF3 and quadrupolar parameters observed by
Mössbauer spectrometry [3, 4]. A second one consists in modelling distributions of short range
local structure which may account for the experimental quadrupolar parameter distribution: in
this case molecular dynamics appears to be an extremely suitable route as will be discussed in
the following sections. This latter approach has been previously used in the case of fluoride
glasses and EPR fine structure parameters [5, 6].

In this paper, we concentrate on the amorphous phase of GaF3. Since this compound
is highly ionic, the EFG tensor components may be evaluated through charge summations
using a polarizable point charge model. As it will be shown further, amorphous GaF3 may be
considered as a model compound for disordered ionic fluoride network built up from corner
sharing fluorine octahedra such as transition metal fluoride glasses (TMFGs). Furthermore,
due to their large quadrupolar interaction sensitivity to EFG, the 69Ga and 71Ga nuclei are good
candidates to check the validity of the approach which is detailed in the following.

The paper is organized as follows. Experimental details are given in section 2. Section 3
introduces the way to reconstruct the NMR spectra with quadrupolar parameter distributions
of Czjzek type. In section 4, disordered structures of GaF3 are simulated through molecular
dynamics (MD) and EFG calculations are developed using a polarizable point charge model
for these structures. The influence of monopolar and dipolar approximations on the results
is checked. Our calculations give evidence for the dependence of the results on the fluorine
and gallium ionic polarizabilities, the Ga3+ Sternheimer constant and its nuclear quadrupole
moment. Comparisons with the local order structure previously deduced from Mössbauer
[3, 4] and EPR [5, 6] experiments are discussed and allow us to overcome these difficulties.
It will be shown that our results are unable to mirror some frustrated topology as seen in
magnetic amorphous FeF3 by Mössbauer spectrometry [3, 4], but allow us to obtain quantitative
information concerning angular and radial distortions of the GaF6 octahedra.

2. Experiment

2.1. Materials

Amorphous GaF3 was obtained by vapour phase deposition which was conducted in a 6 cm
diameter Pyrex vessel connected to a vacuum system allowing pressure around 10−4 mbar in
the vessel. The platinum crucible containing the starting rhombohedral crystalline phase of
GaF3 was heated with an RF coil.

2.2. NMR measurements

All the experiments were carried out at room temperature on a Bruker MSL 300 spectrometer
(7.0 T). A commercial double bearing 4 mm MAS probe was used for both static and MAS
(15 kHz) spectra.

Both 69Ga and 71Ga isotopes have I = 3
2 , their Larmor frequencies are 72.003 and

91.491 MHz and their quadrupole moments Q(69Ga) = 0.17±0.01 10−28 m2 and Q(71Ga) =
0.11 ± 0.01 10−28 m2, respectively. The error bars correspond to the dispersion of the
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values found in the literature [7]. The definitions of the measured quadrupolar parameters
are the following: the quadrupolar frequency is written νQ = 3eQVZZ/2I (2I − 1)h and
the asymmetry parameter is given by ηQ = (VXX − VYY )/VZZ , where Q is the quadrupolar
moment, VXX, VYY and VZZ are the principal components of the electric field gradient tensor,
with the condition |VZZ| � |VYY | � |VXX| leading to 0 � ηQ � 1. The isotropic chemical shift
δiso used for the spectrum simulation is defined as δiso = 1

3 (δxx + δyy + δzz): δii = σref − σii

where σii (i = x, y, z) are the principal components of the shielding tensor. For sixfold
coordinated Ga, it was previously shown that δaniso is negligible versus ηQ [8–10].

K2NaGaF6, in which the Ga atoms stand at the centre of regular octahedra [11], is used
as an external reference.

Due to the large quadrupolar interaction, the 69Ga and 71Ga static spectra in amorphous
GaF3 extend over more than 1 MHz. Thus, even the central 〈−1/2,+1/2〉 lines are impossible
to irradiate uniformly. Therefore, we used the so called VOCS (variable offset cumulative
spectrum) method [12, 13]: the total spectrum is the sum of 15 full-echo spectra (tpulse–τ–
2tpulse–acquisition) at offsets incremented by 150 kHz corresponding to a flat cumulative
irradiation domain of 2 MHz. Each full echo is easily acquired due to its short duration in the
time domain (less than 100 µs). Moreover, the magnitude computation of the full-echo Fourier
transform leads directly to the correct absorption spectrum because the dispersive part is null.
Although the full-echo acquisitions improve the signal-to-noise ratio, about 20 000 scans were
necessary for each echo spectrum with a recycle delay of 250 ms. The radio-frequency field
strength (100 kHz) was measured on a liquid containing Ga3+ ions (2.5 µs for tπ/2 liquid).
The pulse length, tpulse, was chosen much smaller than tπ/2 (tπ/2 ≈ 3.5tpulse) to ensure a linear
irradiation regime in order to avoid the distortion of the central transition [14, 15].

3. Experimental results

In terms of the second order quadrupolar effect which depends on ν2
Q/ν0, where ν0 is the

Larmor frequency, the 71Ga spectrum at 7 T is equivalent to the 69Ga one at 17.5 T. So, the 69Ga
VOCS spectrum is simply deduced from the 71Ga corresponding one by a multiplication of the
frequency scale by a factor of 3.2. Therefore, only 71Ga spectra will be shown (figure 1(a)) and
discussed in the following. The strongly asymmetrical broad line without any resolved structure
corresponding to the 71Ga VOCS in amorphous GaF3 is quite similar to the one observed in PZG
(PbF2–ZnF2–GaF3) glasses [12]. So, Czjzek quadrupolar parameter distributions P(νQ, ηQ)

[16, 17] previously involved in the simulation of 71Ga NMR spectra in PZG glasses were also
used here for amorphous GaF3. The P(νQ, ηQ) expression is written

P(νQ, ηQ) = 1√
2πσd

νd−1
Q ηQ(1 − η2

Q/9) exp

{
−ν2

Q(1 + η2
Q/3)

2σ 2

}
where σ and d are two adjustable parameters: σ characterizes the strength of the quadrupolar
interaction and d , which is taken in the following as an integer number, corresponds to the
number of independent components of the quadrupolar tensor (d � 5). A decrease of d from
its maximum value of 5, mirrors local geometrical constraints which correlate the quadrupolar
tensor components [17]. It appears that the distribution function P(νQ, ηQ) is null when νQ
and/or ηQ are equal to zero. So, high symmetry electric field gradients are prohibited in
agreement with the notion of disorder in this amorphous compound.

Simulations of both 69Ga and 71Ga NMR spectra in the amorphous phase of GaF3 were
performed using a modified version of the WINFIT Bruker software package developed by
Massiot [18] who introduced the Czjzek distribution in the program [12]. The results were
obtained with the following rules:
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Figure 1. Experimental and simulated 71Ga NMR spectra (a); Czjzek distributions used to calculate
the simulated spectra: d = 2, σ = 4500 kHz (b); d = 3, σ = 3500 kHz (c).

• both the isotropic chemical shifts δiso and the asymmetry quadrupolar parameters ηQ have
the same value for the two isotopes;

• when going from 71Ga to 69Ga, the σ value has to be multiplied by 1.55 which is equal to
the ratio of the quadrupole constants of the two isotopes;

• in agreement with several previous results in fluoride glasses [12], we assumed that the
Ga3+ ions are sixfold fluorine coordinated and an unique isotropic chemical shift value
was considered.

Figure 1(a) shows the fine agreement between the calculated and experimental spectra
obtained by using such distributions with 400 pairs of quadrupolar parameters (νQ, ηQ).
The asymmetry of the spectrum is reproduced quite satisfactorily. This is not the case with
Gaussian distributions of the quadrupolar parameters. The isotropic chemical shift value
δiso = −65±5 ppm confirms the sixfold fluorine co-ordination of Ga3+ ions in the amorphous
GaF3 phase. Two distributions with different d and σ values allowed us to reconstruct the
spectrum: d = 2 and σ = 4500 kHz (figure 1(b)) or d = 3 and σ = 3500 kHz (figure 1(c)) for
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71Ga. For 69Ga, we obtained σ = 7300 kHz for d = 2 or σ = 5500 kHz for d = 3. The error
bar on σ is about 100 kHz. These parameters are close to those allowing the experimental
Ga NMR spectra in PZG glasses to be reproduced: d = 2 and σ = 4600 kHz or d = 3 and
σ = 3650 kHz for 71Ga [12].

From these results, it may be inferred that the quadrupolar parameter distribution is a
characteristic feature of the (GaF6)

3− octahedron distortion common to the two structures.
The Zn2+ and Pb2+ ions, which are specific to the PZG glass structure do not influence
the distribution. This means that the electric field gradient calculations described below for
amorphous GaF3 will be also valid for these glasses.

4. Electric field gradient and quadrupolar parameter calculation in amorphous GaF3

In order to quantify the radial and angular octahedron distortions in such disordered ionic
compounds and eventually to characterize the topological order, it is necessary to relate the
quadrupolar parameters and the EFG at the Ga sites.

Some attempts have already been done to account for Mössbauer [3, 4, 19, 20] or EPR
[5, 6] parameters which are related to EFG.

EFG calculations using a point charge model in the direct lattice have been developed
in AFeIIIF4 (A = K, Cs, Rb, NH4) [19] and MF3 crystalline structures [20] at the dipolar
approximation and in random corner sharing octahedra networks mirroring amorphous FeF3

[3, 4] at the monopolar approximation only. The computed quadrupole parameter distribution
compared well with experimental data from Mössbauer experiments under zero and high
magnetic field. However, the experimental investigations are restricted to iron compounds.

In a work concerning quantification of the local order in PZG (PbF2–ZnF2–GaF3) glasses
[5, 6], the Cr3+ and Fe3+ EPR spectra were found to be very similar to those recorded in
amorphous GaF3, leading to the same conclusion drawn above from the NMR experiments
that the local order around Ga in GaF3 and PZG glasses are similar. This result prompted us
to apply MD calculations on GaF3 to simulate this local order. The empirical superposition
model [21] was applied to calculate the fine structure parameter distributions from the radial
and angular atomic coordinations of the nearest neighbours around the paramagnetic probes. It
was then possible to obtain distributions of the EPR fine structure parameters and to reconstruct
successfully the Cr3+ and Fe3+ EPR spectra in amorphous GaF3 and in PZG glasses in
agreement with the experimental spectra. It was shown that the constituent fluorine octahedra
are only slightly distorted and that the distributions of the fine structure parameters are similar
to the Czjzek ones used to simulate the Cr3+ and Fe3+ EPR spectra [6]. It may be noticed
that in this study, no direct EFG calculations were made. Furthermore, one may suspect the
paramagnetic probes to impose their own environment.

In the present work, the Ga site itself either in GaF3 or in PZG glasses is investigated in
order to quantify the disorder around Ga3+. MD is applied to generate GaF3 disordered phases.
EFG calculations from these phases are used to correlate the measured quadrupolar parameters
to the Ga site distortions. As in [3], [4], [15] and [16], EFG calculations are undertaken using
a polarizable point charge model well adapted for ionic fluorides. This approach is expected
to be valid for any quadrupolar nucleus involved in a disordered ionic structure.

4.1. Polarizable point charge model

In this model, ionic materials are assumed to consist of discrete deformable ions. The local
electric field 
E acting on a given ion induces a dipole moment 
P = [αe] 
E on it. Generally,
the electronic polarizability tensor [αe] is assumed to be isotropic. For an ion µ surrounded
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by some λ ions with charges q(λ) and electronic polarizabilities αe(λ), one obtains

Ei(µ) = 1

4πε0

∑
λ

[
q(λ)Xi( 
Rµ,λ) +

∑
k

αe(λ)Ek(λ)Xik( 
Rµ,λ) + · · ·
]

(1)

for the electric field components and

Vij (µ) = 1

4πε0

∑
λ

[
q(λ)Xij ( 
Rµ,λ) +

∑
k

αe(λ)Ek(λ)Xijk( 
Rµ,λ) + · · ·
]

(2)

for the EFG tensor components, with, Xk,1,...︸︷︷︸
p indices

( 
R) = ((∂p/∂xk∂x1 . . .)(1/r))r=R . This leads to

a self-consistent problem. The first term in the brackets in equations (1) and (2) is the monopolar
contribution; the second term is the dipolar one. We neglected higher order contributions. The
summations over λ are performed on spherical volumes.

From equation (2), the six different components of the EFG tensor, VXX, VYY , VZZ ,
VXY , VXZ and VYZ are calculated in the laboratory reference frame. Next, the EFG tensor is
diagonalized by the Jacobi method, the three eigenvalues are arranged in the order |VZZ| >

|VYY | > |VXX and the relevant quadrupolar parameters νQ = (1 − γ∞)3eQVZZ/2I (2I − 1)h
and ηQ are calculated. γ∞ is the Sternheimer anti-shielding factor which takes into account the
EFG induced by the gallium electronic cloud distortion. Due to the Ga3+ fluorine octahedral
environment, we neglect the anti-shielding anisotropy and assume the scalar Sternheimer
constant, γ∞ = −9.5 determined for free Ga3+ [22].

4.2. Molecular dynamics (MD)

The amorphous GaF3 structure was simulated using MD calculation [23] as it was previously
done to compute EPR parameter distributions [6]. Details about the method were previously
described [6, 23]. Two kinds of calculation were achieved: the initial set of atomic positions is
either generated at random or obtained from the rhombohedral crystallized GaF3. The former
one was previously applied to account for the x-ray diffraction spectrum of amorphous GaF3

[23] but was not checked on experimental results sensitive to short range ordering. The latter
one was applied to account for EPR spectra of Cr3+ and Fe3+ doped amorphous GaF3 and PZG
glasses [6]. In this case, it may be kept in mind that it will be impossible to prove the frustrated
topology that was suggested in FeF3 by Mössbauer spectrometry [3, 4].

When the initial set of atomic positions corresponds to crystallized GaF3, the ‘temperature
T ’ is the main parameter of the calculation. It fixes the total energy of the system E = 3

2NkT

where N is the total number of atoms. The higher the temperature, the faster the ions
move away from their initial positions and the larger the generated octahedron distortions.
Table 1 gathers the mean values and the standard deviations of the Ga3+–F− distance and
F–Ga–F angle distributions within (GaF6)

3− octahedra at different ‘temperatures’. Figure 2
displays such distributions at ‘300 K’. 80% of the F–Ga–F angles are distributed around 90◦

(labelled α in table 1, corresponding to orthogonal bonds) and 20% near 180◦ (labelled β

in table 1, corresponding to opposite bonds). These distributions were obtained using initial
atomic positions generated from three blocks of 32 unit cells (in a (10 Å)3 cubic cell) of
crystallized GaF3, corresponding to 576 octahedra (2304 atomic positions). The computation
time was about 8 min for each block on a personal computer with an 133 MHz Intel Pentium
microprocessor. We recall that the EPR fine structure parameter distribution allowing us to
simulate EPR spectra of Cr3+ and Fe3+ doped amorphous GaF3 was obtained for ‘T = 120 K’.

For calculations performed from an initial set of random atomic positions of the same size,
the distance and angle distributions are given in figure 3. The mean values and the standard
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Table 1. Mean values and standard deviations (st. dev.) of the radial and angular distributions
obtained by MD. 〈α〉 and 〈β〉 stand for mean values of the two kinds of F–Ga–F angle in GaF6
octahedra.

Radial st. dev. St. dev. St. dev.
〈dGa−Fe〉 (Å) 〈α〉 from 90◦ (◦) 〈β〉 from 180◦ (◦)

‘10 K’ 1.887 0.008 90.00 1.51 178.1 2.27
‘75 K’ 1.888 0.021 90.00 2.36 176.7 3.76

‘120 K’ 1.888 0.026 89.99 3.00 175.7 4.84
‘200 K’ 1.890 0.035 89.99 3.90 174.4 6.36
‘300 K’ 1.893 0.042 89.98 4.83 173.0 7.89
‘500 K’ 1.898 0.056 89.96 6.51 170.4 10.76
‘random’ 1.993 0.110 91.17 17.02 153.5 29.37

Figure 2. Ga–F distance and F–Ga–F angle distributions in (GaF6)
3− octahedra obtained by MD

calculations at ‘300 K’ starting from the rhombohedral GaF3 phase.

deviations are given in table 1 on the line entitled ‘random’. The radial distribution is at least
twice broader than in the previous case, and the two angle distributions overlap significantly.
These features are consistent with strongly distorted octahedra.

Actually, much larger sets of atomic positions should be used in order to reach convergence
at each step of the calculation. Unfortunately, the MD computation time is growing very fast
with the number of (GaF6)

3− octahedra taken into account. So, the number of ions chosen in the
following calculations is based on a compromise between accuracy and practicability. It will be
demonstrated that large MD computation times may be avoided and relevant calculations can
be done from the 2304 atomic positions obtained with short time MD calculations. The con-
vergence of the EFG calculations and the correctness of the various approximations will be ex-
amined using an unique large set of atomic positions generated from a block of 864 unit cells of
crystallized GaF3, corresponding to 5184 octahedra (20 736 atomic positions) inside a (60 Å)3

cubic cell. It was previously shown that this size is sufficient to reach convergence in crystals
[3]. This was also checked by us on crystallized GaF3. For this unique data set, the ‘temper-
ature’ was arbitrarily chosen equal to ‘300 K’. The computation time reaches nearly 4 days.

4.3. Monopolar approximation

In the monopolar approximation, the EFG can be determined directly from equation (2). We
begin to check the convergence of the quadrupolar parameter distribution calculation in this
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Figure 3. Ga–F distance and F–Ga–F angle distributions in (GaF6)
3− octahedra obtained by MD

calculations starting from random initial atomic positions.

approximation by using the large set of atomic positions obtained at ‘300 K’. Let S1 be the
largest sphere of 30 Å radius included in the box containing all the atoms. In order to check
the influence of the radius of the integration sphere Si which contains the ions labelled λ in
equation (2) we perform summations over these λ ions inside nine different integration spheres
Si with radii varying between 2.2 and 18 Å. Taking into account that the largest radius of Si is
equal to 18 Å, EFG monopolar contributions can be calculated only over the 160 Ga3+ ions,
labelled µ in equation (2), which are inside the S2 sphere of 12 Å radius in the centre of S1. It
may be noticed that the smallest sphere Si contains only the 6 F− nearest neighbours of a central
Ga3+. These calculations prove the νQ frequency distribution to be practically independent of
the size of the integration sphere [24]. From this result, two conclusions were drawn: (a) a
calculation using only the 6 F− nearest neighbour contributions is sufficient to construct the
quadrupolar parameter distributions and simulate the experimental spectrum; (b) but, such a
calculation is sensitive to short range order only and then insensitive to any topological disorder
or medium range order.

This proves that relevant results at the monopolar approximation may be obtained from
small atomic position sets. Then, the sets of 2304 atomic positions presented in the previous
section may be used to perform EFG calculations. For the sets obtained at ‘120 K’, ‘300 K’
and ‘500 K’, the related quadrupolar parameter distributions and NMR spectra are shown in
figures 4(a)–(c). Whatever the ‘temperature’, the shape of the distributions looks like the
Czjzek ones. However all the calculated spectra are too much narrow. The width of the Czjzek
distribution used to simulate the experimental NMR spectrum is 4.5 and 2.0 times larger
than that of the distributions calculated for ‘120 K’ and ‘500 K’ respectively. In contrast,
when EFG calculation is performed from the atomic position set obtained from initial random
atomic positions, the calculated spectrum is found to be very similar to the experimental one
(figure 4(d)). In this case, the broad radial and angular distributions (table 1, ‘random’) are not
so far from those obtained for the random network of corner sharing octahedra representing
the amorphous structure of FeF3 where both a radial standard deviation of 0.05 Å and an α

standard deviation of 13◦ were found [3]. It should be recalled that the corresponding EFG
calculations were carried also in the monopolar approximation. Nevertheless, the ‘random’
radial and angular distributions are in disagreement with previous results obtained by EXAFS
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Figure 4. Quadrupolar parameter distributions and related simulated NMR spectra calculated from
MD data at ‘120 K’ (a), ‘300 K’ (b), ‘500 K’ (c) and ‘random’ (d) in the monopolar approximation.
The experimental spectrum (thick solid line) is compared to the calculated ones (thin solid line).
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[25], Raman [26] and EPR [6] studies which predicted only slightly distorted octahedra. This
disagreement with previous results might be explained by the inadequacy of the monopolar
approximation. The calculations in the dipolar approximation are developed in the next section.

4.4. Dipolar approximation

The general calculation method may be split into three stages:

• First, the Ei(µ) electric fields are calculated at the monopolar approximation.
• Next, the total electric fields (i.e. at the dipolar approximation) are evaluated using an

iterative method with the Ei(µ) as initial values for Ek(λ) in equation (1). The precision
is better than 0.5%.

• Finally, the Vij are calculated according to equation (2).

When we want to carry out these calculations, a difficulty arises from the fact that
relations (1) and (2) take into account the electronic polarizabilities denoted αe(Ga3+) and
αe(F−) and that these parameters are far from settled. Table 2 gathers all the αe(F−) values
encountered in literature [19, 27–33]: they range from 0.79–1.62 Å3. Our calculations are
based on the following assumptions. First, αe(F−) is considered as an adjustable parameter.
Next, the value of αe(Ga3+) is deduced from αe(Zn2+) using the Shanker relation [34] which
states that as Zn2+ and Ga3+ have the same electronic configuration, αe(Zn2+)/αe(Ga3+) =
(rZn2+/rGa3+)3. With rZn2+ = 0.89 Å, rGa3+ = 0.76 Å [35] and αe(Zn2+) = 0.5 Å [28], one
obtains αe(Ga3+) ≈ 0.3 Å3. Finally, a constant ratio between αe(Ga3+) and αe(F−) is assumed:
αe(F−)/αe(Ga3+) = 0.8/0.3 = 2.67 [28].

Table 2. Values of the F− polarizability from the literature (in Å3).

[27] [28] [29] [30] [19] [31] [32] [33]
1927 1965 1973 1976 1982 1984 1985 1992

1.04 0.81 0.87 1.38 0.79–0.90 0.89–1.36 0.92–1.12 1.62

4.4.1. Direct calculation. The first step consists in calculating the electric field in the dipolar
approximation. As above, the ‘300 K’ large set of atomic positions is used with the S1 sphere
of 30 Å radius containing all the useful atomic positions. We checked that an integration sphere
Si of 10 Å radius is sufficiently large to reach convergence for the monopolar electric fields.
So, these electric fields can be evaluated for all the ions located inside a sphere S2 of 20 Å
radius in the centre of S1. Afterwards, using once again integration spheres of 10 Å radius, the
total dipolar electric fields can be calculated as a function of the F− polarizability αe(F−) only
for the ions inside a sphere S′

2 of 10 Å radius in the centre of S1. S′
2 contains 84 Ga3+ ions.

But, the total electric fields are found in average to be proportional to those obtained in the
monopolar approximation. The proportionality coefficient increases with the F− polarizability
value. Thanks to this proportionality, the total electric fields can be directly deduced from the
monopolar contributions for each ion inside the sphere S2 of 20 Å in the centre of S1. It may
be outlined that the number of Ga3+ ions contained in S2 is nearly ten times as large as in S′

2.
In the second step, the EFGs in the dipolar approximation have to be evaluated. As was

done for the EFG calculation in the monopolar approximation, we verified that a calculation
carried out with only the six F− first neighbours which corresponds to an integration sphere
of 2.2 Å radius gives the same quadrupolar frequency distribution as with larger integration
spheres [24]. So as in the monopolar approximation, a calculation using only the six F− nearest
neighbour contributions is sufficient to construct the quadrupolar parameter distributions and to
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Figure 5. (a) Quadrupolar parameter distribution and related simulated NMR spectra calculated
from MD data at ‘120 K’ with αe(F−) = 1.75 Å3 in the dipolar approximation. The experimental
spectrum (thick solid line) is compared to the calculated one (thin solid line). (b) As (a) at ‘500 K’
with αe(F−) = 0.9 Å3.

simulate the experimental spectrum but prevents us from determining any topological disorder
or medium range order. Then the EFG can be directly calculated over the 370 Ga3+ ions
contained in a sphere of 16 Å radius in the centre of S1 (direct calculation). As this so-called
‘direct’ calculation can be worked out with a large set of atomic positions only, we proposed a
simplified method in order to carry out the calculation from the small sets obtained at various
‘temperatures’ (‘120 K’, ‘300 K’ and ‘500 K’).

4.4.2. Simplified method. Thanks to the above direct calculation, we relate the 370 EFG
values obtained in the dipolar approximation to those in the monopolar one, versus αe(F−).
Thus, an average multiplying factor r can be defined for each αe(F−) value. Then, using these
r factors we are able to infer the quadrupolar frequencies in the dipolar approximation from
those calculated in the monopolar one. We find a fairly good agreement between the spectra
calculated from both the direct and the simplified methods [24]. This result allowed us to use
this simplified method from the small atomic position sets.
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Assuming that we may be confident in the γ∞ and Q values for Ga3+ given by literature
and taking into account that the F− polarizability value is far from settled, two approaches are
developed with αe(F−) as an adjustable parameter:

• In the first one, we assume that the ‘120 K’ MD file is representative of the disorder in
amorphous GaF3 and PZG glasses as found in EPR. To account for the experimental
NMR spectrum, αe(F−) is found to be equal to 1.75 Å3 corresponding to r = 4.5
(figure 5(a)). This value is larger than all those gathered in table 2, but reasonably close to
the value 1.62 Å3 given by Shannon in a recent paper [33]. The corresponding quadrupolar
parameter distribution is presented in figure 5(a) together with the experimental and
calculated NMR spectra.

• In the second one, we assume αe(F−) = 0.9 Å3 which is in agreement with most of
the previous works. Then, r = 2 and the ‘500 K’ MD data is found to give the
correct quadrupolar parameter distribution which allows the experimental spectrum to
be simulated (figure 5(b)). The related angular and radial distributions are broader than
in the previous case (table 1) but the octahedra still remain slightly distorted.

It may be surprising to obtain two different distributions (figures 5(a) and 5(b)) which enable
us to account accurately for the experimental spectrum. However a similar result has also
been noticed when reconstructing this spectrum with Czjzek distributions of the quadrupolar
parameters: two of them, with d = 2 and σ = 4500 kHz (figure 1(b)) or d = 3 and
σ = 3500 kHz (figure 1(c)), allowed us to reconstruct the 71Ga spectrum. We can note
that the distribution calculated from the ‘120 K’ (respectively ‘500 K’) atomic position set is
comparable to the d = 2 (respectively d = 3) Czjzek one. Owing to the featureless NMR
spectra, this ambiguity cannot be removed by NMR alone. Nevertheless, the atomic positions
obtained by MD calculations at ‘120 K’ starting from the crystallized phase of GaF3 give rise
to a fine agreement with EPR and NMR measurements. This prompted us to apply this latter
atomic position set in a recent study related to NMR investigation of mechanically milled
nanostructured GaF3 powders [36].

5. Conclusion

Thanks to the shifted echo and VOCS techniques, the broad 69Ga and 71Ga spectra were
recorded in amorphous GaF3. These spectra were found identical to those obtained in PZG
glasses and were simulated with continuous quadrupolar parameter Czjzek distributions and
an unique Ga3+ chemical shift value. From this chemical shift value it was inferred that in the
disordered GaF3 phase, the Ga3+ ions are at the centre of fluorine octahedra as it was previously
found in several crystallized compounds [12].

In order to quantify the disorder, EFG calculations were undertaken using a polarizable
point charge model. Lattice summations were performed on spherical volumes in direct space.
Then, NMR spectra of disordered phases of GaF3 were reconstructed from atomic position
data files calculated by MD. The distributions of the quadrupolar parameters have an overall
shape very similar to the analytical Czjzek ones. Whatever the approximations used in the EFG
calculation, it was shown that only the six F− nearest neighbours contribute significantly to
the quadrupolar parameter distributions in order to simulate the experimental spectra. So, the
71Ga NMR spectra are sensitive to short range order only, allowing a quantitative description
of the radial and angular distortions around Ga3+ ions but preventing us from determining any
topological disorder or medium range order, as previously proposed.

We showed that the width of the distribution is strongly dependent on the approximation
used. With a strict point charge model (monopolar approximation), the MD file generated



NMR quadrupolar parameters and short range order 5787

from initial random atomic positions enabled us to calculate the experimental amorphous GaF3

spectra, but the relevant octahedron distortions are too much larger than those inferred from
previous experimental studies: EXAFS [25], Raman [26] and EPR [6]. The more elaborated
polarizable point charge model in the dipolar approximation allowed us to quantify the short
range order and recover only slightly distorted octahedra, despite large uncertainties on the
ionic polarizability values. From our simulations, it may be concluded that the radial and
angular distributions compatible with the amorphous structure of GaF3 are those related to our
MD calculations from rhombohedral GaF3 initial atomic positions with ‘120 K � T � 500 K’
(table 1). So, the most important result is the following: our results are unable to mirror some
frustrated topology as seen in magnetic amorphous FeF3 by Mössbauer spectrometry [3, 4],
but allow us to obtain quantitative informations concerning angular and radial distortions of
the GaF6 octahedra. This may be seen as the necessary first step towards a more complete
modelling of the amorphous GaF3 network.

Since the similarity of the Ga NMR spectra in amorphous GaF3 and PZG glass, these
distributions may also account for the local order in transition metal fluoride glasses. In any
case, (GaF6)

3− octahedra are only slightly distorted. Then, our results give evidence for short
range order in amorphous GaF3 and TMFG very similar to crystalline structure built up from
MF6 octahedra. Finally, it should be noted that this rather new approach may be applied to
any ionic disordered compound which contains quadrupolar nuclei.
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